Polycomb Group Protein Ezh2 Controls Actin Polymerization and Cell Signaling

نویسندگان

  • I-hsin Su
  • Marc-Werner Dobenecker
  • Ephraim Dickinson
  • Matthew Oser
  • Ashwin Basavaraj
  • Raphael Marqueron
  • Agnes Viale
  • Danny Reinberg
  • Christoph Wülfing
  • Alexander Tarakhovsky
چکیده

Polycomb group protein Ezh2, one of the key regulators of development in organisms from flies to mice, exerts its epigenetic function through regulation of histone methylation. Here, we report the existence of the cytosolic Ezh2-containing methyltransferase complex and tie the function of this complex to regulation of actin polymerization in various cell types. Genetic evidence supports the essential role of cytosolic Ezh2 in actin polymerization-dependent processes such as antigen receptor signaling in T cells and PDGF-induced dorsal circular ruffle formation in fibroblasts. Revealed function of Ezh2 points to a broader usage of lysine methylation in regulation of both nuclear and extra-nuclear signaling processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polycomb group protein enhancer of zeste 2 is an oncogene that promotes the neoplastic transformation of a benign prostatic epithelial cell line.

Polycomb group protein enhancer of zeste 2 (EZH2) is a master regulatory protein that plays a critical role in development as part of the polycomb repressive complex 2. Polycomb repressive complex 2 controls numerous cell cycle and regulatory genes through trimethylation of histone 3, which results in chromatin condensation and transcriptional silencing. EZH2 overexpression has been correlated ...

متن کامل

Destabilization of B2 RNA by EZH2 Activates the Stress Response

More than 98% of the mammalian genome is noncoding, and interspersed transposable elements account for ∼50% of noncoding space. Here, we demonstrate that a specific interaction between the polycomb protein EZH2 and RNA made from B2 SINE retrotransposons controls stress-responsive genes in mouse cells. In the heat-shock model, B2 RNA binds stress genes and suppresses their transcription. Upon st...

متن کامل

MiR-203 Interplays with Polycomb Repressive Complexes to Regulate the Proliferation of Neural Stem/Progenitor Cells

The polycomb repressive complexes 1 (PRC1) and 2 (PRC2) are two distinct polycomb group (PcG) proteins that maintain the stable silencing of specific sets of genes through chromatin modifications. Although the PRC2 component EZH2 has been known as an epigenetic regulator in promoting the proliferation of neural stem/progenitor cells (NSPCs), the regulatory network that controls this process rem...

متن کامل

Enhancer of zeste homolog-2 (EZH2) methyltransferase regulates transgelin/smooth muscle-22α expression in endothelial cells in response to interleukin-1β and transforming growth factor-β2.

Smooth muscle-22α (SM22α), encoded by transgelin (TAGLN), is expressed in mesenchymal lineage cells, including myofibroblasts and smooth muscle cells. It is an F-actin binding protein that regulates the organization of actin cytoskeleton, cellular contractility and motility. SM22α is crucial for the maintenance of smooth muscle cell phenotype and its function. SM22α is also expressed in the pro...

متن کامل

HBP1-mediated Regulation of p21 Protein through the Mdm2/p53 and TCF4/EZH2 Pathways and Its Impact on Cell Senescence and Tumorigenesis*

The activity of the CDK inhibitor p21 is associated with diverse biological activities, including cell proliferation, senescence, and tumorigenesis. However, the mechanisms governing transcription of p21 need to be extensively studied. In this study, we demonstrate that the high-mobility group box-containing protein 1 (HBP1) transcription factor is a novel activator of p21 that works as part of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2005